You are here: Home Research Cryogeophysics


 Schilthorn Site

Thawing processes as a consequence of anthropogenic global warming alter the Earth's cryosphere and can potentially lead to various forms of landscape deformations, vegetation degradation, and slope instabilities in alpine regions.

Schilthorn Equipment

A precise and physical representation of permafrost dynamics is important to improve multiple-scale earth system models and answer questions related to climate change impacts and natural hazards. In this regard, non-invasive geophysical methods often offer the only opportunity to image the spatiotemporal evolution of subsurface ice content and to monitor meltwater flow dynamics. Geoelectrical methods are particularly suited for permafrost monitoring, as the electrical medium properties are directly sensitive to the phase change between ice and unfrozen water. The Department of Geophysics develops new monitoring approaches based on spectral induced polarization and electrical self-potential measurements particularly applied at the Schilthorn (Bernese Alps, Switzerland), where long-term records of other monitoring data (e.g. temperature, soil moisture, electrical resistivity tomography) are already available, in close collaboration with partners at the University of Fribourg (Prof. C. Hauck).

Schilthorn View

Document Actions